Matrix Multiplication

Intro

As we all know, Matrix Multiplication(MM) is widely used in many area, such as Computer Graphics, Deep Learning, etc. In these project, we use 9 ways to achieve Matrix Multiplication $A_{n\times n}\times B_{n\times n}=C_{n\times n}$. In dgemm1 and dgemm2, I use 1 and 12 **register** to accelerate the Multiplication. Especially, in dgemm2 , we use 2*2 size of block multiplication to reduce running time. Theoretically, naive computational intensity(CI) is $q = f/m = 2n^3/(n^3 + 3n^2) \approx 2$, while block is $q = 2n^3/((2N + 2) \times n^2) \approx n/N = b$, which b means block size. To explore the improvement of registers, dgemm4 without registers is fairly compared to dgemm2 .

Besides, matrix wise MM, which means block size can be arbitrary, is implemented in dgemm5 , to make is easier to measure, we set the block size $B=4$. However, the size of cache greatly affect the **best** block size \overline{B} . In theory, if cache size is M_c , it must satisfy $3b^3 < M_c$. So actually, in real machine, there must have some problems when computing and need to set block size manually, which may not operate at its best. Thus, **Cache-oblivious** method is needed, which means you don't need to know M_c for this to work. The computational intensity is $CI = 2n^3/O(n^3/\sqrt{M}) = O(\sqrt{M})$. And to achieve this goal, **recursive** method is used, so we call these ways "recursive".

Additionally, considering **locality**, in recursive way, we must *divide and rule*. So if the matrix size is too big to fit the cache, the access of data can be a huge cost. Thus, in $A \times B = C$, we reorder the data on A , B to **Z-morton**, so that it can fit the cache and improve our performance.

Idea

Blocked MM

- Theoretically, naive computational intensity(CI) is $q = f/m = 2n^3/(n^3 + 3n^2) \approx 2$, and block CI is $q = 2n^3/((2N + 2) \times n^2) \approx n/N = b$. If $b > 2$, it's more efficient.
- Must satisfy $3b^3 < M_c$

Block Wise

Blocked Matrix Multiplication

- To achieve block wise MM, we need inner loop.
	- May reduce the efficient.

Recursive

According to the Linear Algebra:

$$
\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}
$$

So, we have these code:

```
Define C = RMM (A, B, n)if (n==1) {
       C00 = A00 * B00;
   } else{
       COO = RMM (A00 , B00 , n/2) + RMM (A01 , B10 , n/2)C01 = RMM (A00 , B01 , n/2) + RMM (A01 , B11 , n/2)C10 = RMM (A10, B00, n/2) + RMM (A11, B10, n/2)C11 = RMM (A10 , B01 , n/2) + RMM (A11 , B11 , n/2)}
   return C
1
2
3
4
5
6
7
8
9
10
```
- We analyze the CI and get the result: $CI = 2n^3/O(n^3/\sqrt{M}) = O(\sqrt{M}).$
	- \circ This method didn't need cache size M_c , and it will fit the cache automatically.

Z-morton

 \circ

- Considering **locality**, in recursive way, we must *divide and rule*. So if the matrix size is too big to fit the cache, the access of data can be a huge cost.
	- \circ We reorder the data on A, B to **Z-morton**, which shows like below.

- (The number in the cell is the index order in memory.)
- Generate z_index before compute: improve speed at the cost of space. \bullet

Result analyze

- At the first line dgemm0 , the data is the running time (nanoseconds).
- At the following line dgemm2, 4-10, the data is the ratio of running time, comparing to dgemm0.

The line chart of dgemm2,4-10 : \bullet

-
-
- Compare and Analyze
	- 1. dgemm0 and dgemm1
		- Register improves a lot.
		- Save 50% time.
	- 2. dgemm0 and dgemm4
		- \Box 2*2 block improves a lot.
		- Save $60\% \sim 70\%$ time.

3. dgemm2 and dgemm4

- \Box both $2*2$ block
- Save 36% time.
- Register improves a lot.
- 4. dgemm2 and dgemm5_1
	- both 2*2 block
	- dgemm2 **unrolling** the loop in dgemm5¹
		- 6 times faster!
		- May have parallel optimize
- 5. dgemm5 , dgemm5_1 and dgemm6
	- without reg
	- Block wise $B=2,4$: need more 20% time.
	- Recursive methods improves 24% compared to Block wise
- 6. dgemm6 and dgemm7
	- 2*2 block improve a lot: **0.84->0.30**
	- Save 65% time.
- 7. dgemm7 and dgemm8
	- Register improves a little
- 8. dgemm8 and dgemm9
	- Z-morton's improve is **better** than Register
	- As matrix size improving, Disk -> Mem is more important than Mem -> Reg
- 9. dgemm9 and dgemm10
	- Z-morton with Register improves a little
	- Maybe as matrix size improving, some of the reg applications will be failed.
	- Frequent in and out stack slow down the speed.
- Total
	- \circ As matrix size improving, in size of 16-1024, degmm2 with 2×2 block+reg is the fastest.
	- However, at n=2048 and more, recursive is better than degmm2 .

Problem

- \bullet When implementing Recursive method, I use $\text{memory}()$ in the function.
	- These causes many data access and slow down the computing.
- When implementing Z-morton method, I use 2Ddecode_z() in the function.
	- These causes index transfer each time, and has negative effect for performance.
- **Evaluation**
	- To get best performance, we should:
		- use more index to compute
		- \blacksquare less data transfer
		- more parallel
		- notice locality
		- unrolling the loop
		- improve speed at the cost of space

Conclusion and Discussion

These projects achieve **Block Wise, Recursive, Z-morton** methods of MM. And the best method's running time improves 83% compared to standard MM. After experience, we get the following conclusions: Besides, more other methods can be used to improve this MM task: openmp(parallel, simd), and Strassen.