Matrix Multiplication

Intro

As we all know, Matrix Multiplication(MM) is widely used in many area, such as Computer Graphics,
Deep Learning, etc. In these project, we use 9 ways to achieve Matrix Multiplication

Anxn X Bpxn = Chxn. In dgemml and dgemm2, | use 1 and 12 register to accelerate the
Multiplication. Especially, in dgemm2 , we use 2*2 size of block multiplication to reduce running time.
Theoretically, naive computational intensity(Cl) is ¢ = f/m = 2n®/(n3 + 3n?) ~ 2, while block is
qg=2n3/((2N +2) x n*) ~ n/N = b, which b means block size. To explore the improvement of
registers, dgemm4 without registers is fairly compared to dgemm2 .

Besides, matrix wise MM, which means block size can be arbitrary, is implemented in dgemm5 , to
make is easier to measure, we set the block size B=4 . However, the size of cache greatly affect the
best block size B. In theory, if cache size is M, , it must satisfy 3b° < M.. So actually, in real
machine, there must have some problems when computing and need to set block size manually,
which may not operate at its best. Thus, Cache-oblivious method is needed, which means you don't
need to know M. for this to work. The computational intensity is

CI =2n?/0(n®/v/M) = O(v/M). And to achieve this goal, recursive method is used, so we
call these ways "recursive".

Additionally, considering locality, in recursive way, we must divide and rule. So if the matrix size is
too big to fit the cache, the access of data can be a huge cost. Thus, in A x B = C, we reorder the
data on A, B to Z-morton, so that it can fit the cache and improve our performance.

Idea
Blocked MM

Blocked [Tiled] Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b subblocks where b=n/ N is called the block size
fori=1toN
forj=1toN
{read block Ci,j] into fast memory}
fork=1toN

{read block A[i,k] into fast memory}
{read block B[k,j] into fast memory}

Cli.jl = CIi,j] + Ali,k] * B[k,j] {do a matrix multiply on blocks}

2n? to read and write each block of C once

N*n2 to read each block of A N2 times

N*n2 to read each block of B N? times

{write CI[i,j] back to slow memory}

nxn elements
NxN blocks
Each block is bxb

af://n0
af://n2
af://n7
af://n8

'(1)3 0 1,2 3(4 5|6 7 b 0 8|16 24|32 40|48 56 |7 | | R
8 910 1112 13|14 15 1 9|17 25|33 41|49 57 HH H | # HH A R AR
16 17|18 19|20 21|22 23 2 10|18 26|34 42|50 58 Hit B |\ B HH | HE | HE B
24 25|26 27|28 29|30 31 3 1119 27|35 43|51 59 Hi B | # #H A R R
32 33|34 35|36 37|38 39 4 12|20 28|36 44|52 60 Hi B | # H|HE HIE | R
40 41|42 43144 45|46 47 5 13|21 29|37 45|53 61 Hit #H | #H HH HE HE R R
48 49|50 51|52 53|54 55 6 14|22 30|38 46|54 62 Hit B B | | HE
56 57|58 59|60 61|62 63 7 15|23 31|39 47|55 63 HH B | # #H HE HE HEHE

e Theoretically, naive computational intensity(Cl) is ¢ = f/m = 2n®/(n3 + 3n?) ~ 2, and
block Clis ¢ = 2n%/((2N +2) x n?) ~n/N = b.Ifb > 2, it's more efficient.
e Must satisfy 3b° < M,

Block Wise

Blocked Matrix Multiplication

c

(double *) calloc(sizeof (double),

/* Multiply n x n matrices a and b
void mmm(double *a,
int i, j, k;
for (i = 0; i < n; i+=B)
for (j

n*n) ;

*/
double *b, double *c, int n) {

0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il i; i1 < i+4B; i++)
for (j1 j; J1 < j+B; j++)
for (k1 k; k1 < k+B; k++)
c[il*n+jl] += a[il*n + k1l]*b[kl*n + jl];

i1
a
::‘ E 3
i1 HRER

1

Block size B x B

e To achieve block wise MM, we need inner loop.

o May reduce the efficient.

Recursive

According to the Linear Algebra:

Ar

[1411
1422

1421

|

So, we have these code:

{Bn
By

B,
Bs,

A11B13 + A12Bo
A1 Bys + A By’

|

{AnBu + A19By
A2 Bq1 + Ay By

af://n17
af://n26

Define C = RMM (A, B, n)

if (n==1) {
C00 = A00 * BOO ;
} else{
C00 = RMM (A00 , BOO , n/2) RMM (AO1 , B10 , n/2)

c0l = rRvM (AO0O0 , BO1 , n/2)
Ccl10 = RMM (A10 , BOO , n/2)
cll = rRwM (A10 , BO1 , n/2)

RMM (AO1 , B11 , n/2)
RMM (A1l , B10 , n/2)
RMM (A1l , B11 , n/2)

}

return C

 We analyze the Cl and get the result: CI = 2n3/0(n?/vV M) = O(v' M).

o This method didn't need cache size M, and it will fit the cache automatically.

Z-morton

Alternate Data Layouts

+ May also use blocked or recursive layouts
+ Several possible recursive layouts, depending on the order of the sub-blocks
* Copy optimization may be used to move

Blocked-Row Major Z-Morton order (recursive)

» but index calculations to find
Al[i,j] are expensive

» May switch to col/row major for
small sizes

E%J - works well for any cache size

e Considering locality, in recursive way, we must divide and rule. So if the matrix size is too big to
fit the cache, the access of data can be a huge cost.

o We reorder the data on A, B to Z-morton, which shows like below.

o
0 1 4 P 6 17 20 21
i, A e ol o 1; w " .2.2 ¥ .2.3 .
8 9 12 13 24 25 . 28 29 »
10 11 14 15 26 27 30 31

af://n38

= (The number in the cell is the index order in memory.)
e Generate z_index before compute: improve speed at the cost of space.

Result analyze

e Atthefirstline dgemm0, the data is the running time (nanoseconds).
e At the following line dgemm2,4-10, the data is the ratio of running time, comparing to dgemm0 .

matrix

- Remark 16 32 64 128 256 512 1024 2048 Avg Note

dgemmO Standard 1.80E+04 1.20E+05 1.06E+06 7.92E+06 6.14E+07 5.52E+08 6.49E+09 5.62E+10 Running time
Ratio to

dgemm1 1 register 0.5778 0.5769 0.4326 0.4755 0.5350 0.6277 0.6871 0.8118 0.5905
dgemmO

2*2 block

dgemm?2 H12%reg 0.2667 0.2843 0.2072 0.2061 0.2052 0.2138 0.1865 0.2159 0.2232

dgemm4 2*%2 (B=2) 0.4333 0.4447 0.3186 0.3647 0.3468 0.3641 0.2510 0.2545 0.3472

dgemm5_1 matrix wise B=2 1.4088 1.6700 1.5201 1.4458 1.3407 1.2780 1.2933 1.2396 1.3995

dgemm5 matrix wise B=4 1.7500 1.6966 1.2433 1.4510 1.3825 1.3520 0.9201 0.8443 1.3300

dgemm6 Recursive 1.2611 1.4489 0.9475 1.1851 1.0745 1.2724 0.7083 0.6602 1.0698

dgemm7 Rec+2%2 0.4111 0.4713 0.3027 0.3341 0.3486 0.3711 0.2455 0.2276 0.3390

dgemms Rec+2*2+reg 0.3222 0.3791 0.2524 0.2611 0.2675 0.2885 0.2012 0.1832 0.2694

dgemm9 Rec+2*2+7 0.4667 0.6500 0.3016 0.2914 0.2884 0.2667 0.2086 0.1747 0.3310

dgemm10 Rec+2*2+reg+Z 0.4722 0.4821 0.3019 0.2962 0.2929 0.2819 0.1992 0.1743 0.3126

e The line chart of dgemm2,4-10 :

DGEMM Performance Analysis

8 T T
—@— 1 register
7L =0 2*2 block +12*reg i
2*2 (B=2)
=== matrix wise B=2
6 || —® matrix wise B=4 |
=@ Recursive
o =——@—= Rec+2*2
© 5 | =@ Rec+2*2+reg
o —0— Rec+2"2+Z
_5 Rec+2*2+reg+Z
® 4
Q@
8
o3
<
2
1
0
24 25 26 27 28 29 210 211

Matrix Size
e Compare and Analyze
1. dgemm0 and dgemml

m Register improves a lot.
= Save 50% time.
2. dgemm0 and dgemm4

m 2% block improves a lot.
= Save 60% ~ 70% time.

af://n54

3. dgemm2 and dgemm4

= both 2*2 block

= Save 36% time.

m Register improves a lot.
4. dgemm2 and dgemm5_1

= both 2*2 block
= dgemm2 unrolling the loop in dgemm5_1

= 6 times faster!
= May have parallel optimize
5. dgemm5 , dgemm5_1 and dgemm6

= without reg

» Block wise B=2,4 : need more 20% time.

= Recursive methods improves 24% compared to Block wise
6. dgemm6 and dgemm7

= 2%2 block improve a lot: 0.84->0.30
= Save 65% time.
7. dgemm7 and dgemm8

= Register improves a little
8. dgemm8 and dgemm9

= Z-morton's improve is better than Register
= As matrix size improving, Disk -> Mem is more important than Mem -> Reg
9. dgemm9 and dgemm10

= Z-morton with Register improves a little
= Maybe as matrix size improving, some of the reg applications will be failed.
= Frequent in and out stack slow down the speed.

e Total

o As matrix size improving, in size of 16-1024, degmm2 with 2*2 block+reg is the fastest.
o However, at n=2048 and more, recursive is better than degmm2 .

Problem

e When implementing Recursive method, | use memcpy () in the function.

o These causes many data access and slow down the computing.
e When implementing Z-morton method, | use 2bdecode_z() in the function.

o These causes index transfer each time, and has negative effect for performance.
e Evaluation

o To get best performance, we should:

= use more index to compute

® |ess data transfer

= more parallel

= notice locality

= unrolling the loop

= improve speed at the cost of space

Conclusion and Discussion

af://n304
af://n334

These projects achieve Block Wise, Recursive, Z-morton methods of MM. And the best method's
running time improves 83% compared to standard MM. After experience, we get the following

conclusions: Besides, more other methods can be used to improve this MM task: openmp(parallel,
simd), and Strassen.

	Matrix Multiplication
	Intro
	Idea
	Blocked MM
	Block Wise
	Recursive
	Z-morton

	Result analyze
	Problem
	Conclusion and Discussion

