
Matrix Multiplication
Intro
As we all know, Matrix Multiplication(MM) is widely used in many area, such as Computer Graphics,
Deep Learning, etc. In these project, we use 9 ways to achieve Matrix Multiplication

. In dgemm1 and dgemm2 , I use 1 and 12 register to accelerate the
Multiplication. Especially, in dgemm2 , we use 2*2 size of block multiplication to reduce running time.

Theoretically, naive computational intensity(CI) is , while block is
 , which means block size. To explore the improvement of

registers, dgemm4 without registers is fairly compared to dgemm2 .

Besides, matrix wise MM, which means block size can be arbitrary, is implemented in dgemm5 , to
make is easier to measure, we set the block size B=4 . However, the size of cache greatly affect the

best block size B . In theory, if cache size is , it must satisfy . So actually, in real

machine, there must have some problems when computing and need to set block size manually,
which may not operate at its best. Thus, Cache-oblivious method is needed, which means you don’t
need to know for this to work. The computational intensity is

. And to achieve this goal, recursive method is used, so we
call these ways "recursive".

Additionally, considering locality, in recursive way, we must divide and rule. So if the matrix size is
too big to fit the cache, the access of data can be a huge cost. Thus, in , we reorder the
data on to Z-morton, so that it can fit the cache and improve our performance.

Idea

Blocked MM

af://n0
af://n2
af://n7
af://n8

Theoretically, naive computational intensity(CI) is , and
block CI is . If , it's more efficient.
Must satisfy

Block Wise

To achieve block wise MM, we need inner loop.

May reduce the efficient.

Recursive

According to the Linear Algebra:

So, we have these code:

af://n17
af://n26

We analyze the CI and get the result: .

This method didn't need cache size , and it will fit the cache automatically.

Z-morton

Considering locality, in recursive way, we must divide and rule. So if the matrix size is too big to
fit the cache, the access of data can be a huge cost.

We reorder the data on to Z-morton, which shows like below.

Define C = RMM (A, B, n)

if (n==1) {

 C00 = A00 * B00 ;

} else{

 C00 = RMM (A00 , B00 , n/2) + RMM (A01 , B10 , n/2)

 C01 = RMM (A00 , B01 , n/2) + RMM (A01 , B11 , n/2)

 C10 = RMM (A10 , B00 , n/2) + RMM (A11 , B10 , n/2)

 C11 = RMM (A10 , B01 , n/2) + RMM (A11 , B11 , n/2)

}

return C

1

2

3

4

5

6

7

8

9

10

af://n38

matrix
size

Remark 16 32 64 128 256 512 1024 2048 Avg Note

dgemm0 Standard 1.80E+04 1.20E+05 1.06E+06 7.92E+06 6.14E+07 5.52E+08 6.49E+09 5.62E+10 Running time

dgemm1 1 register 0.5778 0.5769 0.4326 0.4755 0.5350 0.6277 0.6871 0.8118 0.5905
Ratio to
dgemm0

dgemm2
2*2 block
+12*reg

0.2667 0.2843 0.2072 0.2061 0.2052 0.2138 0.1865 0.2159 0.2232

dgemm4 2*2 (B=2) 0.4333 0.4447 0.3186 0.3647 0.3468 0.3641 0.2510 0.2545 0.3472

dgemm5_1 matrix wise B=2 1.4088 1.6700 1.5201 1.4458 1.3407 1.2780 1.2933 1.2396 1.3995

dgemm5 matrix wise B=4 1.7500 1.6966 1.2433 1.4510 1.3825 1.3520 0.9201 0.8443 1.3300

dgemm6 Recursive 1.2611 1.4489 0.9475 1.1851 1.0745 1.2724 0.7083 0.6602 1.0698

dgemm7 Rec+2*2 0.4111 0.4713 0.3027 0.3341 0.3486 0.3711 0.2455 0.2276 0.3390

dgemm8 Rec+2*2+reg 0.3222 0.3791 0.2524 0.2611 0.2675 0.2885 0.2012 0.1832 0.2694

dgemm9 Rec+2*2+Z 0.4667 0.6500 0.3016 0.2914 0.2884 0.2667 0.2086 0.1747 0.3310

dgemm10 Rec+2*2+reg+Z 0.4722 0.4821 0.3019 0.2962 0.2929 0.2819 0.1992 0.1743 0.3126

(The number in the cell is the index order in memory.)
Generate z_index before compute: improve speed at the cost of space.

Result analyze
At the first line dgemm0 , the data is the running time (nanoseconds).
At the following line dgemm2,4-10 , the data is the ratio of running time, comparing to dgemm0 .

The line chart of dgemm2,4-10 :

Compare and Analyze

1. dgemm0 and dgemm1

Register improves a lot.
Save time.

2. dgemm0 and dgemm4

2*2 block improves a lot.
Save time.

af://n54

3. dgemm2 and dgemm4

both 2*2 block
Save time.
Register improves a lot.

4. dgemm2 and dgemm5_1

both 2*2 block

dgemm2 unrolling the loop in dgemm5_1

6 times faster!
May have parallel optimize

5. dgemm5 , dgemm5_1 and dgemm6

without reg
Block wise B=2,4 : need more time.

Recursive methods improves compared to Block wise
6. dgemm6 and dgemm7

2*2 block improve a lot: 0.84->0.30
Save time.

7. dgemm7 and dgemm8

Register improves a little
8. dgemm8 and dgemm9

Z-morton's improve is better than Register
As matrix size improving, Disk -> Mem is more important than Mem -> Reg

9. dgemm9 and dgemm10

Z-morton with Register improves a little
Maybe as matrix size improving, some of the reg applications will be failed.
Frequent in and out stack slow down the speed.

Total

As matrix size improving, in size of 16-1024, degmm2 with 2*2 block+reg is the fastest.
However, at n=2048 and more, recursive is better than degmm2 .

Problem
When implementing Recursive method, I use memcpy() in the function.

These causes many data access and slow down the computing.
When implementing Z-morton method, I use 2Ddecode_z() in the function.

These causes index transfer each time, and has negative effect for performance.
Evaluation

To get best performance, we should:

use more index to compute
less data transfer
more parallel
notice locality
unrolling the loop
improve speed at the cost of space

Conclusion and Discussion

af://n304
af://n334

These projects achieve Block Wise, Recursive, Z-morton methods of MM. And the best method's
running time improves compared to standard MM. After experience, we get the following
conclusions: Besides, more other methods can be used to improve this MM task: openmp(parallel,
simd), and Strassen.

	Matrix Multiplication
	Intro
	Idea
	Blocked MM
	Block Wise
	Recursive
	Z-morton

	Result analyze
	Problem
	Conclusion and Discussion

